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A treatment will be given of the problem of the elastic equilibrium of a 
half-plane with a circular orifice under the action of an arbitrary external 
loading on the circular and rectilinear parts of the boundary. The solution 
of the problem Is given in a system of bipolar coordinates In the form of a 
stress function which is a generalization of the function obtained byJeffery 
Cl] for an eccentric ring. 

1. The most general solution of the plane problem of elasticity for a 
region bounded by two circles, In particular for a half-plane with a clrcu- 
lar orifice, was given by Jeffery Cl]. This solution has been derived for 
the case when the boundaries of the region are subjected to arbitrary exter- 
nal forces represented by Fourier series and has been given in bipolar coor- 
dinates by means of a stress function which, by virtue of the required sln- 
gle-valuedness of the displacements, has a form [2] 

g9 = G(corha - cos /3) p -;- B,(coaha - cos p) a + F (/3 sin $ +vadnha) + 

-t H (f+iaha - va sin p) + i If,,” (a) cos I$ + f,,” (a)sin nP1 (1.1) 
Tt=l 

where (1.2) 

fmc (a) = A,ccmh(n -+ 1) a $- B,cmh(n- 1) a + C,‘hh(n + 1) a+D,chnh(n-i)a 

(n>V 

f,,’ (a) = A,‘cush(n + 1) a + Bfcosb(n - i) a + C,‘sidh(n + 1) a + D~‘dnh(n- i) a 

(n>2) 

flc (a) = AlCCQh2a + B,’ + Clcsinh2a, f: (a) = A,‘cah242 + Clsrinh2a 

However, In spite of a large number of particular problems solved by 
Jeffery's method, the question of the convergence of this solution in the 
general case remains open. It Is not difficult to convince oneself that, 
for a half-plane with an orifice, 
series. 

solution (1.1) can lead to divergent 

In fact, we will treat the simplest case of the equilibrium of a half- 
plane with an orifice, when the rectilinear boundary Is free of stresses 
and the circular boundary Is subjected to an arbitrary not self-equilibra- 
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ting system of forces (equilibration takes place at infinity). Then the 
Jeffery's method for ynC and fna on the rectilinear boundary(a = 0) leads 
to the following Expressions 

"f,,"'(O) Y - 7&B, + &C'(O), nf,,"' (0) = 2H (1.3) 

n (n2 - 1) f,” (0) zz - 2nF, n (n” - 1) f,” (0) = - 2G 

where B,,,H,F and G can be determined in terms of the resultant of the forces 
act!ng on the circular boundary, and, in general, they are non-zero. 

Thus, the necessary conditions for the convergence and two-fold differ- 
entiability (for the determination of the stresses) of series (l.l), namely 

nfnc' (0) ----f 0, R (73 - 1) f,” (0) -_, 0, nj,“’ (0) + 0, n (n2 - 1) 1,” (0) --, 0 

when n-+oc (1.4) 

are not fulfilled and, consequently, solution (1.1) is inapplicable in this 
case. 

We mention without proof that, for the eccentric ring (not having infi- 
nitely remoted points), conditions (1.4) are fulfilled on the whole always 
when the external forces are in equilibrium. 

Below, for the case of half-plane with an orifice, we give a SolUtion of 
the plane problem of the theory of elasticity which is suitable for a wider 
range of problems than Jeffery's solution. 

2. We will make use of a system of bipolar coordinates which can be 
obtained from Cartesian coordinates by means of the transformation c21 

x= asinfi/(cosba-cosp), y=adnha/(amha--COsp) 

The region under consideration is bounded by the line a = 0 and the cir- 
cle a = y. 

Let the boundaries of the region be subjected to the external forces re- 
presented in the form of Fourier series 

(2.1) 

az a~ = a0 ‘._ 2 7 (aI, cos np + b,’ sin np) 

T&=1 

03 
for a = r 

aUa = co’ + x (c,’ cos rap + d,,’ sin np) 

aZap = a, ” + x (a,” co.3 np + b,” sin np) 

Fig. 1 for a =0 
aa, = co” + i k” cos np + d,,” sin np) 

Beside the conditions of representability by means of Fourier series, 
other necessary restrictions will become evident in the following. 

The components of the resultant force and moment of the external forces 
applied to the boundary Q = y can be determined by well-known Formulas 
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_Y=-22n 5 n(a,’ ’ ny 

Y = - J -an)e- p&= 2n 2 n (c,’ + b,‘) eeny 

00 2 9 4 
2n 

-‘I =&$# r -42 a,’ eeny (2.2) 
?I=0 

Fig. 2 

The components of the resultant of the external forces applied to the 
boundary a = 0 can also be unbounded. 

Thus the problem leads to the determination of a blharmonic stress func- 
tion, which in the considered region satisfies conditions of Single-valuedness 
of the displacements and boundary conditions (2.1) 

3. We will take the stress function in the form 

g@=G&a- cos PI P -t- &J (caba - Co9 p) u + F (p sin p +va*a) + 

fH(P~a--msinP)+(Kcaha-Kcos~+Ldnha+Tsinp)ln+~~~a-cos~)- 

- Larinha -Tasinp+(Rsinj3+Umnha--Ucospj-Wdmha) GUI-1 
sin p 

CQ-cos p 
+ 

where fnc(a) and fns(a) can be determined by Formulas (1.2); v is a quantity 
depending on the elastic constants. 

Thl .s function differs from Jeffery's stress function (1.1) by the pne- 
sence of terms which are singular at the point a = B = 0, at infinity, and 
which admit the possibility that the external forces atinfinity are self- 
equilibrating. The non-singular terms La sinh a and Ta sin B are necessary 
for the fulfillment of the'condition of single-valuednessof the displace- 
ments. We consider the solution in more detail when the loading is symmet- 
ric. 

In this case, the stress function will only contain terms which are even 
functions of B 

gQ=R,btia-cosp)a+F(psinp+vatia)-ua+-(Kda -KcosP+ 

sin $ +Ltia)In(cmhu-cosp)+Rsinp un-* elL__osp j- 2 j,” (a) co9 r&p (3.2) 
VI=1 

The boundary conditions become 

aTap = fJ b,,’ sin n/3, ao, = c,’ -i- i c,’ co9 nf!J 

n=l n=1 

for a=7 

for a = 0 

(3.3) 

By determining the stresses on the boundaries of the region ( 
loping them in Fourier series, and equating them to ESrpressions 
obtain four systems of Equations 



- 2h”’ tr) + 2flC’ w-q - ~~coshr - 2t’hosh~ + b%inl? remY - Rcorhr -1: 

-t 2Rninh3 Teey - 2Klinh7 - 2b,’ 

-f- 2Rsird p2-'Ly - a, (n>, 3 
(3.4) 

2f,’ (7) - B,ti2y - 3F,- 2Fvrindy + 4lu9 - 4L dahrcostq + + R - 

- Rsiqcoehy + RsiDdr - Kcorh27 = 2c,,’ 

2.3 frc (7) - 2flCI (r).ti 7 f 2&linh+( -I- 4Fcorhr f 4L&# ye-Y - 2Lritaq - 

- IEahr - Re-’ + TUtat? reeY + 2Kcoohr = 2c,’ 

3*4hC (7) - 2.3 1%” (+x&r- Zf,“’ (r)riahy - F -I- 4Ldd 7e-2Y -I- f R i- 

+ 2W @y - K = 2%’ 

(n + 1) (n + 2) r,“,, (r)- 2 ha - 1) 1,” (7)cab-f + (n - 1) (n - 2) r:_, (T) - 

- 2fnc’ (r)sitthr + 4Zdd Teeny + 2Rllnd yf-“y = 2cn’ (n > 3) (3.5) 

- 21,” (0) + 2flc’ (0) - 2Bb - R - 2L = 2b,” 

- 3f,” (0) + 2.2 kc’ (0) - hC’ (0) + B, + +R = 2b,’ 

- (n + 1) f,,!il (0) + 2nf,” (0) - (n - 1) f,,!l(0) = 2b,” (n z 3) (3.6) 

2flc (0) - BF + +R - K = 2c,” 

2~3f,c(0)+4P-2R++=2c,” 

3.4 fsc (0) - 2.3 flc (O).- F + ‘/*R - K = 2%’ (3.7) 

(n -!- 1) (n + 2) f& (0) - 2 (nS - I) j,” (0) + (n - 1) (n - 2) I,“_, (O) = 2c,” (n > 3) 

These systems can easily be solved by means of the method set forth in 

[Il. Resulting solutions are 

(3.8) 

nfnc’ (r) = &[ft’ (r) - B. -2Le-“’ - +ewzy - 2Kshhye-Y- 2 y bp’e-pY]e”‘+ 

P=;l 

+ -!- [- sinb 7 fl”’ (7) + B, -I- 2Le-2Y- 2Zdinl~eah~ - 2 Lnsid r + + emxy - 

- Rnsini? y _I- 2KtireT 1. Znxl b,‘ep’ 
1 

&?-my 
(n>V 

p=1 

r&"'(O) = 
1 
flC' (0) - u, - zL#-- ~-2n~bp.].+zL+2n~pbr.x (n >, 2) 

u=1 d p-1 
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n (9 - i) f,’ (7) -= ~~[f~” (y) - 2Ee-“- +.e”-- 2Rainhye-Y -B, - 

n-1 

- 2 2 bP'eFPY 

P”l, 
1 ne’lY + -&- [-- ft’ (r) + ZLT+~ + +. e-2y + 

+ 2Ksi&ye-Y + B,+ 2R~*p.i-] eny + 
n-1 

P=l 

~~[--+~~p(b,'+cP~)e-~kr+ 

n-i 
- Be-22 b;tePr 1 ne-nr+*r 

n-1 %)=I 

2xT [fi”’ (7) - 2LeaaY- + eety--- 2K c*yey - & - 

n-1 
- 2 x bp’ePy 1 ewny + --& c F - 2Lti2 r -+ 2 p (bp’ - cp’) eP’1 eeny 

1 
0, > 21 

p=1 p=1 

n-1 

~(~~a-~)f~e(0)----22nF-~nR-2K+2 2 (n-p)pcp” 

P--l 

fn > 2) 

We will consider Expression for n~'~O'(y) in detail. It can be rewritten 
in the form 

n-1 

- RnrinbP r f 21y~a3%~ -+- 2 2 bp’ePy 
3 

ewny f 2 $ bp’,(n-p)y} (nZt2) 
P=l P=n 

The necessary condition that this Expression tends to zero means that the 
coefficient of eny must vanish 

f;’ (y) -B, - 2Le-2y - $.. RewzY - 2Kzi&yewY - 2 s qe-py = 0 

P--l 

Analogically, from the requirements n+f,,"(O) - 0 and n(n2 - l)_f,' - 0 
follows the necessity of satisfying following conditions 
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fc’ (r) - B, - 2Le-2Y - + Re-2Y - 2K:sinh@ - 2 fj bl,‘euPY = 0 

p=1 

f,“’ (0) - B, - 2L - + R - 2 -jj b," z 0 

P==l 
co 03 

2F - R - 2 2 pcpR = 0, # _- z: PQp ” = 0 

p=1 p-1 

Last four conditions in (3.9) determine the constants L, R, .F and K. 

First two Equations in (3.9) together with last Equations in (3.8) make 
it possible to determine B. 
Expresslon (1.2) . 

and the coefficients AIC, Blc and C1 "for 41E(a) in 
Remaining Equations (3.8) are sufficient for the deter- 

mination of the constants A,', Bnc, C," and D,'. 

The problem with asymmetric loading of the region boundaries can be solved 
in complete analogy. In this case, for the constant coefficients of the 
stress function we obtain 

U .= - 2 f$ ap’e-py + 2 coth y $j p (ap’ 
co 

sinhaT 
- d7,‘) ewEi’ f 2 2 pad,,” (3.10) 

p=o P==l p=1 

co 00 02 a, 

WE-- 2 2 p tap’ - dp’) eT1?* - 2 x papn, P =: 2 apl, !I’===--- r] pd,” 
p=1 p=1 p--o p=1 

Expressions (3.9) and (3.10) make it possible to find the restrictions 
imposed on the external loading by the convergence condition; the Fourier 
coefficients of the loading on the rectilinear boundary must satisfy the 
requirement that the following series converge 

There are no additional restrictions on the circular boundary. 

Thus, all coefficients of the stress function (3.2) can be determined. 
It should be noted that the fulfillment of the neccessary conditions (3.9) 
will not be sufficient for convergence of the obtained series. As suffici- 
ent conditions it can be shown the convergence condition of the series 

however, it would appear that one could find weaker sufficient conditions. 

4. As an example, we treat the half-plane with a circular orifice (Fig.1) 
under the action of loading distributed along the contour of the orifice 
according to the law 

aoa = p cos cp = Q~T=w~ cos P - 1 UTaa = 0 
x coiby- eosp ’ 
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The rectiiintar boundary is free from load;:*;. Tiien 

Q *r e-~ 
n 

+,* = b,,’ = d,’ = a,,* = .bnR = c,,” = dnr = 0, 

x 

cn’ =; - i s ma cos np dP = F emny (n&i) 
0 

By formulas (3.9) we obtain 

L=K=O, F= Q 
2n 

First two Equations (j-g), together with Equations (3,8),give with regard 
to (1.2) 

Alccosh2~ + BIC $ Clcsinh2~ - BgdIlhyeahr = $(vrinb’y - sinh re+) 

2A~hh2~ + 2C~cosh2y - B, = 3 emey, 
2JS 

Ale + B,e = 0, 2Clc - B, = 2 

A,,‘fosh(n i- 1) $’ i- B,‘-(n - 1) 1 + C,‘W(n + f) r + D,‘rinbfn - i) r = 0 

(n + 1) A,%inh(n + 1) 7 + (n - l)BnCai&n - 1) T + (n -t 1) C,C=Nn + 1) T f 

+ (n- i)Dnccosh(n - i) r = - -$*yemny 

A,,’ + B,,’ = 0, (n + 1) c,c + (n - i) 0,” = 0 

Solving these Equations and substituting the foundvalues into (3.2), we 
obtain final Expression for the stress function 

gcD= $(2axbny - 2~0thr- vdt~)(atia- acosP)S $ (p sin P -!- valinhfa) + 

+ -$ sin p utr* 
sin p 

e’-cosf3 
+-$+v - 2 c0th~)cash2ucosp + 

Fig.2 shows the nature of the dependence of the stress u at point A 
(Fig.1) on the position of the orifice relative to the rect linear boundary 1 
of the half-plane. 
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